Décomposition polaire

Théorème 1 (Décomposition polaire). On a les homéomorphismes :

$$\begin{array}{cccc} O_n(\mathbb{R}) \times S_n^{++}(\mathbb{R}) & \longrightarrow & GL_n(\mathbb{R}) & & U_n(\mathbb{R}) \times H_n^{++}(\mathbb{R}) & \longrightarrow & GL_n(\mathbb{R}) \\ (O,S) & \longmapsto & OS & & (U,H) & \longmapsto & UH \end{array}$$

Démonstration.

On ne démontrera ici que le premier homéomorphisme, la démonstration du second étant similaire.

On note μ cette application. Elle est bien définie et elle est continue.

Étape 1 : Montrons que μ est surjective.

Soit $M \in GL_n(\mathbb{R})$. La matrice tMM est symétrique, et on a de plus $\langle X, {}^tMMX \rangle = \langle MX, MX \rangle = \|AX\|^2 \geqslant 0$, pour tout $X \in \mathbb{R}^n$, et puisque $\langle X, {}^tMMX \rangle = 0 \Leftrightarrow AX = 0 \Leftrightarrow X = 0$ on a que tMM est dans $S_n^{++}(\mathbb{R})$. On peut diagonaliser tMM dans une base orthonormée. Il existe alors $P \in O_n(\mathbb{R})$ et $D = \text{Diag}(\lambda_1, \ldots, \lambda_n)$ avec $\lambda_i > 0$ pour tout i tels que ${}^tMM = PDP^{-1}$. On pose alors $S = P \text{Diag}(\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_n})P^{-1}$. C'est une matrice symétrique, puisque P est orthogonale, et définie positive, car ses valeurs propres sont strictement positives. On a $S^2 = {}^tMM$ et, si l'on pose $O = MS^{-1}$, il vient que :

$${}^{t}OO = {}^{t}MS^{-1}MS^{-1} = {}^{t}S^{-1} {}^{t}MMS^{-1} = {}^{t}S^{-1}S^{2}S^{-1} = I_{m}$$

Ainsi M = OS, où $O \in O_n(\mathbb{R})$ et $S \in S_n^{++}(\mathbb{R})$, donc μ est surjective.

Étape 2 : Montrons que μ est injective.

Supposons que l'on ait M = OS = O'S', avec $O \in O_n(\mathbb{R})$ et $S \in S_n^{++}(\mathbb{R})$. Il vient alors :

$$S^2 = {}^{t}MM = {}^{t}O'S'O'S' = {}^{t}S' {}^{t}O'O'S' = S'^2$$

Soit Q un polynôme interpolateur tel que, pour tout $i \in [1, n]$, $Q(\lambda_i) = \sqrt{\lambda_i}$. Alors :

$$S = PQ \left(\begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \right) P^{-1} = Q \left(P \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} P^{-1} \right) = Q(S^2) = Q(S'^2)$$

Or, S' commute avec S'^2 , donc avec $Q(S'^2) = S$, et donc S' et S sont diagonalisables dans une base commune. Il existe ainsi une matrice de passage P_0 qui permet de les diagonaliser simultanément. On a alors $S' = P_0 \operatorname{Diag}(\mu_1, \dots, \mu_n') P_0^{-1}$ et $S = P_0 \operatorname{Diag}(\mu_1, \dots, \mu_n) P_0^{-1}$. Alors :

$$S'^2 = S^2 \Longrightarrow P_0 \operatorname{Diag}(\mu_1'^2, \dots, \mu_n'^2) P_0^{-1} = P_0 \operatorname{Diag}(\mu_1^2, \dots, \mu_n^2) P_0^{-1}$$

$$\Longrightarrow \forall i \in [\![1, n]\!], \ \mu_i'^2 = \mu_i^2$$

$$\Longrightarrow \forall i \in [\![1, n]\!], \ \mu_i' = \mu_i$$

$$\Longrightarrow S' = S$$

Ainsi, on a S = S', puis O = O', d'où l'injectivité de μ .

Étape 3 : Montrons que μ^{-1} est continue.

Soit $(M_p)_{p\in\mathbb{N}}$ une suite de $GL_n(\mathbb{R})$ qui converge vers M. On note, pour tout $p\in\mathbb{N}$, $(O_p,S_p)=\mu^{-1}(M_p)$, de sorte que $M_p=O_pS_p$, avec $O_p\in O_n(\mathbb{R})$ et $S_p\in S_n^{++}(\mathbb{R})$. On va montrer que les suites $(O_p)_{p\in\mathbb{N}}$ et $(S_p)_{p\in\mathbb{N}}$ convergent respectivement vers O et S.

Comme $U_n(\mathbb{R})$ est compact, soit \overline{O} une valeur d'adhérence de $(O_p)_{p\in\mathbb{N}}$, et soit $(O_{p_k})_{k\in\mathbb{N}}$ une sous-suite de $(O_p)_{p\in\mathbb{N}}$ qui converge vers \overline{O} . Alors la sous-suite $(S_{p_k})_{k\in\mathbb{N}}$ converge vers $\overline{O}^{-1}M$, matrice symétrique et définie positive, car :

$$\overline{S} = \overline{O}^{-1}M \in GL_n(\mathbb{R}) \cap \overline{S_n^{++}(\mathbb{R})} = GL_n(\mathbb{R}) \cap S_n^{+}(\mathbb{R}) = S_n^{++}(\mathbb{R})$$

On a donc, par injectivité de μ , que $M = \overline{OS}$, puis $\overline{O} = O$ et $\overline{S} = S$. D'où la continuité de μ^{-1} .

Corollaire 2. Pour $A \in GL_n(\mathbb{R})$, on $a \|A\|_2^2 = \rho({}^{t}AA)$.

Démonstration.

Soit A = OS la décomposition polaire de A. Comme $\|OSx\|_2 = \|Sx\|_2$ pour tout vecteur $x \in \mathbb{R}^n$, on a $\|A\|_2 = \|S\|_2$. Comme S est symétrique réelle, elle est diagonalisable dans une base orthonormée (e_1, \ldots, e_n) , ordonnée de sorte que les valeurs propres correspondantes soient dans l'ordre décroissant. Maintenant, si $x = \sum_{i=1}^n x_i e_i$ est de norme 1, on a :

$$||Sx||_2 = \left\| \sum_{i=1}^n \lambda_i x_i e_i \right\|_2 \le |\lambda_1| \left\| \sum_{i=1}^n x_i e_i \right\|_2 = |\lambda_1| = \rho(S)$$

La borne étant atteinte pour $x=e_1.$ On a ainsi montré que $\|S\|_2=\rho(S),$ et on a ensuite :

$$||A||_2^2 = ||S||_2^2 = \rho(S)^2 = |\lambda_1|^2 = \rho(S^2) = \rho({}^{t}AA)$$

Références

[CG13] Philippe Caldero and Jérôme Germoni. Histoires Hédonistes de Groupes et de Géométries 1. Calvage et Mounet, 2013